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Vibrations of Thin Conical Shells Subjected to Sudden Heating

S. Y. Lu* anp C. L. Sunt
Unaversity of Florida, Gainesville, Fla.

The present problem is a study of the response of truncated, thin conical shells subjected
to rapid surface heating, The time-dependent temperature gradient across the wall will pro-
duce a moment that therefore is included in the equation of motion. The axisymmetric de-
flection function is divided into two parts in order to satisfy the nonhomogeneous boundary
conditions. The Galerkin method is used to integrate the equation of motion, and a second-

order differential equation is solved thereafter.

The guasi-static solution is a limiting case

when the mass density approaches zero. In the numerical example, the conical shell is heated
suddenly at one surface and insulated at the other. The natural frequencies and deflections
vs various geometr'c parameters are evaluated. For very thin shells, the ratio between the
maximum deflection and the maximum static-deflection is nearly two to one.

Nomenclature

thermal diffusivity

parameter defined in Eq. (39)

Young’s modulus

nondimensional thermal moment, Eq. (10)

radius at the smaller end

temperature gradient

thickness of shell

longitudinal mode number = odd integers

number defined in Eq. (23)

surface coordinates

dimensional time

nondimensional time = I/unit of time

dimensional displacement components of the middle
surface (Fig. 1)

w/h

length index and meridional distance, respectively
defined in Eq. (4) and Fig. 1

value of x at the larger end

thermal expansion coefficient

semivertex angle

Poisson’s ratio

natural frequency, rad/sec

nondimensional frequency = @f/t

frequency parameter = ah (R /h)¥5/E)\/?

mass density

nondimensional mass density defined in Eq. (9)
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Introduction

HE free vibrations of conical shells have been studied by

several investigators in recent years. In Ref. 1, Feder-
hofer determined the natural frequency of conical shell by the
use of power series and the Rayleigh-Ritz method. Herr-
mann and Mirsky? studied the free vibrations with considera-
tion of small vertex angle. They assumed sinusoidal mode
shapes in the determination of frequencies. Methods of
approach for the free vibration problems have been dis-
cussed by Shulman.? The axisymmetric modes and fre-
quencies of conical shells have been determined by Gold-
berg, Bogdanoff, and Marcus? after numerically integrating
a set of first-order differential equations. The same tech-
nique has been applied also to study the modes and fre-
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quencies of pressurized cohical shells.* In Ref. 6, Saunders,
Wisniewski, and Paslay considered the radial displacement
mode shape in polynomial form for the fixed-end conical
shells. Garnet and Kempner? have studied the axisym-
metric free vibrations of conical shells with the influence of
the transverse-shear deformation and rotatory inertia. A
clamped-end boundary condition was used by Holmes® in
the case of axisymmetric vibrations of a conical shell sup-
porting a mass. Experimental investigation of vibrational
characteristics of eylindrical and conical shells has been made
recently by Watkins and Clary®. All the aforementioned
works are interested in the nature of free vibrations of conical
shells.

When a structural element is subjected to a nonuniform
temperature field, the thermal effects are not negligible in
many cases. If the temperature function varies slowly with
time, the quasi-static solution is sometimes satisfactory.
But in the case of sudden heating, the dynamic effects caused
by the influence of inertia have to be considered. Boley™
first studied the vibrations of beams that have a transient
temperature gradient in the transverse direction. In a later
paper,’t the thermally induced vibrations of rectangular
plates were studied by Boley and Barber.

The purpose of the present study is to find the approxi-
mate dynamic response of truncated conical shells, one
surface of which is subjected to sudden heating. The tem-
perature gradient across the wall thickness will produce a
moment that is time-dependent. The symmetric mode
vibration is considered. The Galerkin method has been
used to integrate the equation of motion. The dynamic de-
flection response to the heat input is obtained by solving the
second-order differential equation. The natural frequency
of the free vibration is found from the homogeneous portion
of the second-order equation. The quasi-static solution Is a
limiting case when the mass density approaches zero. Nu-
merical calculations have been made with various geometric
parameters of the conical shells. For the purpose of com-
parison, the temperature field used in the calculation has
the same expression as that assumed in Ref. 10. The dynamie
effects are apparent from the illustrated results. In order
to write the solutions in brief forms, some functions are de-
noted by symbols. Their expressions are listed in the
Appendix.

Basic Equations

The coordinates r, & and displacement components i,
7, W, are defined in the Nomenclature and Fig. 1. The semi-
vertex angle is denoted by 8. When the deformation is
small, the strain-displacement and strain-stress relations
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1 Geomelry of conical
shell.

with temperature gradient 7T are

= (0a/0r) = (1/E)(or — vog) + T
& = (a/r) — (w/r) cotB + (1/r sinB)(d5/06)

= (1/B)(es — vo,) + aT (0
€0 = (05/0r) (5/r) + (1/r singB) (0@/08)
[2(1 + »)/Eloy

I

where E, a, and v represent Young’s modulus, thermal ex-
pansion coefficient, and Poisson’s ratio, respectively.

If the longitudinal inertia terms are neglected, the equilib-
rium conditions in the middle plane can be satisfied by using
the Airy stress function.!? This function is defined as

o = (1/m@F/or) — (1/r%sin28) (02F/06?)
oy = OF/or? (2)
o = —(0/0r)[(1/rsinB) (0F /06)]

The compatibility equation is established by the following
equality:

2 2
TEv4F -7 OE <;1:173 ab?) - sin256802 + \‘
2 ( beg) B ber
or or } 3)
where |
i = e \
= @2/ar?) + (1/1(0/or) + (1/r2 5in28) (9%/062) |

For convenience, the following detonations are introduced:

x = log.(r/r)

7, = distance along the generator from the vertex to
a point at the smaller end
¢ = @sinf F = F/Eh? w = w/h @
Vi = nnd? = 0%ox%) + (0/0¢?
Vi = nie = (4/0x") — 4(%/0xd¢?) —
4(0%/0x?) + 4(0%/0x*) + 2(0%/0x*0¢?) +
(0%/0¢*%) + 4(0%/0¢?)

After the relations in Eqgs. (1) and (4) are substituted into
into (3), the dimensionless compatibility equation has the
following form:

DZ 2
v = — <% cotB) ex <67u; - %;;) - % ey 2(aT)
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In Eq. (5),

1 w2 i
T f T 0z ©)

and z is the distance from a point in the shell to the middle
surface.

The dimensionless equilibrium equation in the normal di-
rection is expressed as

Se—dxodyy — (1L —3 bﬁ" _ O_F
De~4xy 4 <h cotﬁ) e~ 3x <3X2 ox +
e + e xytMy =0 (7)
where
D = 1/12(1 — »?) 8)

Also first to appear in Eq. (7) are the following dimension-
less terms:

p = (n*/Eh?) (/) 9)
" _ 72 h/2 _
e = g2 s 177 (10)

In the previous equations, f, 5, and T are the dimensional
time, mass density, and temperature distribution, respec-
tively. The term (§/f) is taken as one unit of time, for in-
stance: I/t = 1 sec. Equations (5) and (7) are the basic
equations for the thermally induced vibrations of conical
shells.

Axisymmetric Solution

In this investigation the temperature field varies only in
the transverse direction. The vibration mode is taken to
be axisymmetric. The stress function F and deflection
function w to be solved thus are independent of ¢. From
the definitions in Egs. (4) and Fig. 1, the value of x at the
larger end is xo, and x = 0 at the smaller end. At both ends,
the cones are simply supported and have zero circumferential
strain, but they are free from restrictions on thermal ex-
pansion. The conditions at the ends x = 0 and x = ¥ are
accordingly expressed as:

w=0 (1)
@2w/ox®) — [1 — v](@w/x) + (X/D)M, =0 (12)
[@%/0x®) — (1 + » (/o) ]F = 0 (13)

The solution is made by assuming

w=w + w (14)
such that
Dviw, + exy2My = 0 - (15)
and
_ 52?1)2 b%vl
—4x N _— —
De™vhws + p =0 T 55

N _ax (O _OFY _
<h cotB) e (ax2 ox) = 0 (18)

At the ends x = 0 and x = xo, the conditions are
wy = we = 0
©@%1/0%H — (I — »)(Qui/0x) - (*/D)Mr =0 | (17)
(Q%w02/0x?) — (1 — »)(Qws/Ox) = 0
Similarly, the stress function F is expressed as

F=F+F:+F;+ Fr (18)
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and
Vi = —[(r/h) cotB] eX [(Q%w:/0xH) — (Qwi/0x)]

V4 = —[(r/h)] cotB ex [(0%wn/0x?) — (dw2/dx)]

19
Vi, =0 :

Vi = —(r/h)? ex yaTl)

The boundary condition for /' is found in Eq. (13). Since
the temperature distribution is uniform in the middle plane
and the ends are free from thermal restriction in the present
case, Fr = 0. The solution to Eq. (15) is

w = —(Mr/4D) (Ao + Aix + Ao 4 Age?y)  (20)
The expressions of 4y, 4;, and 4; are determined from the

conditions in Eq. (17). TUpon substituting w; of Eq. (20)
into the first equation of (19) gives

o (1ot (A
= (h c0t6><4D—> X

[Q‘A'S—é'“ 63X 4+ Aex — %Agxe‘"‘x] (21)

The expression of w. has the form
~
Wy = Z Q.. (DM sin "ﬂx (22)
m=1 Xo

where @Q,.(¢) is a dimensionless function of time. The factor
e is used to satisfy the simply supported end condition when
A= (1 — »)/2 (Ref. 13). In the following, n is introduced
suchthat

n o= mw/xo (23)
From Eq. (22) and the second equation of (19),

N
Fo= — <% cotB) e ENX 5™ Q) (fs sinnx + fu cosnx)

m=1
(24)

The function /s assumes the form
Fy = —[(ri/h) cotB](Bix + Bae™) (25)

The coefficients B, and B, to be determined from the condi-
tion in Eq. (13) are functions of @,,(6) and M ().

After substitution of the relations in Eqs. (20-25) into
Eq. (16), the Galerkin method is applied to establish a set
of second-order differential equations. This method in-
volves multiplying the left-hand side of Eq. (16) by e2+Mxsin
(nx)dx and integrating the product between the limits x = 0
and x = xo. In the present study, a solution is obtained
from the use of one term, i.e., m = N, andn = N7w/x,. The
final differential equation has the form

d?Qy d2M ¢

2 o= .
g T =D

1 2
+ <Z COtﬁ) DZJIT <26>

The notation w represents the natural frequency, which is
w? = (Kln/P){K2 — [(r/R) cotB]2Ks) @7

The expressions Ki, Ks, K5, D1, and D, are functions of », n,
and z, but are independent of r/h and B. Their relations
are listed in the Appendix.

From Eq. (26), the quasi-static solution for @y is

@w)st = [(n/h) cotBl*(Ds/w) M r (28)
The complete solution to Eq. (26) is
Qy = a; coswl + az sinwt + Q, (29)
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where @, is a particular solution that depends on M7 and its
second derivative. The constants a, and a» are to be deter-
mined from the initial conditions specified for w, which is the
sum of w; and ws.

Thermal Moment and Initial Conditions

To afford comparison with the cases solved previously on
beams!® and plates,!* the same heat-conduction relation is
adopted for the numerical calculation to be followed. The
shell is suddently heated by a constant heat-input at one side
and insulated at the other. From Egq. (10) in this paper,

, 2ri2aq [ | . 5 Al
My = — - E: fall 2.2
o ArthK [96 7 eXp< I e >] 30

i=13

where ¢, K, and A are heat input, thermal conduectivity, and
thermal diffusivity, respectively. When Eq. (30) is used
i Eq. (26), the particular solution @, in Eq. (29) is found
such that

_ reeq Do sl —
Q1) = I8VEK {(h cotﬁ) 2 (1 coswt)

& AN Dy (n 2
96 J-:L’:g |i<h75> D1 + Jm <I COtB> ] Tj} (31)

{exp[—j2r2(AT/hY)] + (j2rAl/h2et) sinet — coswt}
[<]‘47T4‘4252/h4t2) + wZ

where

T; =

(32)
The initial conditions are assumed,
(w) t—p = (DU)/at> =y = 0 (33>

The first condition finds a; = 0. The second is satisfied by
the variational method.* This yields

ST (5o ot + st

wfom exp[2(1 + Nx] sin?ny dx

(34)

The deflection function is now obtained as below,

r2aq <96D1A @ 1> . :l .
= — ) sinwt | eM sinny —
ik e 2 7

M
IDZ (dp 4+ Asx + Ao + Agxe?) (35)

w = [Qp +

where @, and M7 are expressed in Eqgs. (31) and (30). The
functions 4; and D; are listed in the Appendix. The de-
flection function from quasi-static consideration is

wsy = Mr[[(r/h) cotB]2(Dy/weM sinny —
1/4D<Ao + Aix 4+ Aw® + Axe®)] (36)

The dynamic effects can be shown by comparing the magni-
tudes of deflections found from Eqs. (35) and (36). The de-
flection ratio is defined as the ratio between the maximum w
and the maximum static deflection, or it is expressed as

deflection tatio = Wuux/ (Wst)max (37)
At any time, the deflection ratio is independent of ag/K,
which is a2 common factor in the expressions w and ws;.
Numerical Example and Discussions

Some numerical calculations have been made for studying
the free vibration frequencies and the deflection ratios. The
geometric parameters of conical shells are: the length index
X0, the semivertex angle B, and the radius thickness ratic
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R/h (Fig. 1). The conical shells considered for the numerical
evaluation are made of aluminum of which p = 2.527 X
10— 1b-sec?/in.%, Young’'s modulus £ = 10! psi, and thermal
diffusivity 4 = 0.1333 in.2/sec. The frequency equation
(27) is used to find the relations shown in Figs. 2 and 3. The
frequency parameter Q stands for

Q = Gh(R/W)*(p/E)V: = [@DV2(h*/A)1/B*  (38)

where B is a time-ratio parameter first defined by Boley.?
For cylindrical or conical shells,

B = RY2(R/h)~W(DE/A%)V* (39)

1t can be seen that, for the same §, the frequency parameter
for the shorter cone is higher. When the length-index

3
108 ,’—

6L X,= ol 0
ol T -7 Fig.3 Frequency param-
n X0 10 eter vs mode number at
o~ Lo—— o o different length (semiver-
ol tex angle = 10°, R/h =

500).
le3 L I ) 1
| 3 5 7
N

is the same, the frequency parameter changes significantly
with respect to the vertex angle.

The deflection ratio has been evaluated at m = N = 1 and
x = Xo/2. The variations of ;this ratio with the thickness
of shell are plotted in Figs. 4, 5, and 6. The dynamic effect
is more apparent for thin shells of high R/h ratio. Similar
relationships are expected for the cases of cylindrical shells
(8 = 0, xo — 0) and annular circular plates (8 — 90°).

Appendix

In order to write the relations in brief forms, several fune-
tions have been represented by symbols. They are defined
in the following list:

D =130 —»
M=1—A

N=(1=9)/2 ho= 1A

107

1072
h(in)

1073

Fig. 4 Variation of deflection ratio with wall thickness
8 = 10°, R/h = 500).
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Xo= Ol

B=670MER)" (eacso)

25 5

102

hin)

25 5 '
o™

Fig. 5 Variation of deflection ratio with wall thickness
(8 = 30°, R/h = 500).
Ns =24+ Ae=44
s = 3N+ 2N — (1 + n?)
by = (1 + 2N)[ (64, + 743)/36D]1 — (\345/9D)
by = —[(1 4+ 2N)/6D]JA; b = —[(1 — 2\)/4D) 4,
¢ = exp(Xo) ez = expi(M — Dxol
s = 2\(e®2 — 1)

X0 14+ N
622 -1 + 2)\1

¢y = ¢+ 4NXo C5 =

ce = 2M(cs — 1)
dy = (1 + 012+)‘)/(’ﬂ2 + )\32)
& =1+ et/ 02+ N\
P2 4 Mxo — 2Ns] — 2N

d = (n? -+ A;2)?
de = 0144_)‘[(702 4+ ADx0 — 2N] — 2),
3 (n? + A2)?
d. = (1 — &®) — bser®xo + 0:(1 — )
, =
263
d = b1012(1 - 01) - b2013X0 - b301<1 - Cl)
s =

Ce

fi = MMk + 61%) + (0 — 4n?

fo =40\ + nd)

[ N I S S
f12+f22 f12+f22

fo= = R o+ e - o

ki = D@t 4+ 1) /4Me® T2 02 4+ M)

ks = nt — 2(3\2 — BX - 2n% + \A2 — \)?

ks = 4n®* 4+ 4N©2 — V)

ety
B Cs(n2 + >\22)

k4 = (012)\ _— 1)/4:)\

2e,' T + o2 + o
Cs(n® + N2

Fig. 6 Variation of deflection ratio at different values of
R/h (% = 1.0, 8 = 30°).
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Ag= —dy = [—4 + (4 + c)Aslxe/ca
Ay = —4Ne2Asxo0/
As = csl(ecshi) — (4 + ) hixo] ™
Dy = Kin(dodo + diAy + dads + dsAs) /4D
Dy = (Kin/p)[—do(340 + A3)/9D] + di(As/3D) —
2d,(1 + PPN/ (2 + NH + &1 + a7/ + MY

K, = Aho(n? + o7

nie2t? — 1)
Ky = ku(kon + ks\i?)
K; = nlky — 4Ns)fs + (kahe — Noka)fa
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